
A Digitwise Primality Testing Method via Reverse
Positional Multiplication

arne@hortell.se

Abstract

This paper introduces a novel, deterministic approach to integer factorization and
primality testing, based on positional digit analysis and carry propagation. Unlike
probabilistic or algebraic methods, this approach iteratively reconstructs candidate
factors of a composite number from right to left, using only the digits of the product
and the arithmetic constraints imposed by digit-wise multiplication with carries.

1 Introduction

Factorization and primality testing are central problems in number theory and cryptography.
While well-known methods such as the Miller-Rabin test, AKS primality test, and elliptic
curve factorization provide either fast probabilistic or algebraic tools, they are typically
opaque for manual computation or pedagogical use.

We propose a new approach based entirely on base-10 digit analysis. This method,
which we call the Digitwise Reverse Multiplication Method (DRMM), reconstructs
factor pairs from the product by analyzing the interaction of each digit’s multiplication and
carry propagation. It combines human intuition with a deterministic mechanism that either
converges to a factorization or exhausts all possibilities.

2 Method Overview

Let N be an integer to be factored. DRMM begins with the last digit d0 of N , and determines
all pairs (a0, b0) such that a0 × b0 ≡ d0 mod 10.

Subsequent digits d1, d2, . . . are analyzed recursively, using the decimal multiplication
rule:

dk =
(∑

ai · bk−i + ck

)
mod 10

where ck is the carry from the previous digit multiplication.

1



3 Example: Composite Input

Let N = 10999891. DRMM sees last digit 1 → try pairs (1, 1), (3, 7), (7, 3), (9, 9). Try (3, 7):
3× 7 = 21, carry = 2.
Next digit is 9. Try combinations of second digits (a1, b1) such that:

d1 = a0 · b1 + a1 · b0 + carry ≡ 9 mod 10

Try a1 = 1, b1 = 2 → test holds. Continue similarly. Eventually yields: 1091 × 1009 =
10999891.

4 Example: Prime Input

Let N = 10007, a known 5-digit prime ending in 7. DRMM begins with digit pairs whose
product ends in 7: (1,7), (3,9), (7,3), (9,9).Try (3,9): 3×9 = 27, carry = 2 Try (3, 9) : 3×9 =
27, carry = 2.
Next digit is 0. Try pairs (a,b) such that:

3× b1 + a1 × 9 + 2 ≡ 0 mod 10

None satisfy the equation.
All other starting pairs similarly fail to satisfy the constraints at digit 1 or 2.

This rapid exhaustion of valid paths is a strong indicator that 10007 is prime.

5 Analysis

• Time Complexity: O(n) levels, each branching into 2–5 combinations.

• Termination: Always halts (complete match or path exhausted).

• Correctness: Fully deterministic. If a valid digit decomposition exists, it will be found.

• Limitation: Designed for decimal-like inputs with no noise or obfuscation.

6 Applications and Future Work

• Human-verifiable factorization method

• Use in classroom settings

• Visualizing arithmetic structures

• Base generalization

• AI-guided heuristics for branching path prioritization

2



7 Conclusion

DRMM is an intuitive, visual method for factorization and primality checking. It is especially
effective for numbers with regular digit structure and small factor gaps.

8 RSA Vulnerability Analysis in Binary Form

In binary, all primes end with 1 RSA modulus N = pq ends in 1.Binary DRMM only starts
with (1,1) as last bit pair.

Bit-by-bit, each next bit is constrained to 1–2 possible combinations.Much narrower than
in base-10. For poorly generated primes, or those with known suffixes/prefixes, DRMM may
succeed.

While full 2048-bit RSA remains secure under conventional assumptions, DRMM’s de-
terministic constraints and narrow search space—especially in binary—may enable partial or
full key recovery in future implementations using specialized hardware or AI-guided heuris-
tics.

9 16-bit RSA Illustration

Example: 61× 53 = 3233
In binary:

p = 00111101

q = 00110101

N = 110010100001

Apply DRMM: last bit = 1 start with (1,1) and reconstruct.

3



Appendix A: Reverse Positional Multiplication

For product N = A×B, digit dk is formed as:

dk =
(∑

ai · bk−i + ck

)
mod 10

Appendix B: Binary DRMM Transition Table

ai bi carry in total bit out carry out
0 0 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 0
1 1 0 2 0 1
1 1 1 3 1 1

4



Appendix C: Python Implementations

def drmm_decimal(n_str):

from itertools import product

n_digits = list(map(int, reversed(n_str)))

def search(path_a, path_b, carry, pos):

if pos >= len(n_digits):

a = int(’’.join(map(str, reversed(path_a))))

b = int(’’.join(map(str, reversed(path_b))))

return (a, b) if a * b == int(n_str) else None

digit = n_digits[pos]

for a_d, b_d in product(range(10), repeat=2):

total = a_d * b_d + carry

if total % 10 == digit:

new_carry = total // 10

res = search(path_a + [a_d], path_b + [b_d], new_carry, pos + 1)

if res: return res

return None

def drmm_binary(n_bin):

n_bits = list(map(int, reversed(n_bin)))

def search(path_a, path_b, carry, pos):

if pos >= len(n_bits):

a = int(’’.join(map(str, reversed(path_a))), 2)

b = int(’’.join(map(str, reversed(path_b))), 2)

return (a, b) if a * b == int(n_bin, 2) else None

bit = n_bits[pos]

for a_i in (0, 1):

for b_i in (0, 1):

total = (a_i & b_i) + carry

if total % 2 == bit:

new_carry = total // 2

res = search(path_a + [a_i], path_b + [b_i], new_carry, pos + 1)

if res: return res

return None

5



Appendix D: Lattice Multiplication Grid

6


	Introduction
	Method Overview
	Example: Composite Input
	Example: Prime Input
	Analysis
	Applications and Future Work
	Conclusion
	RSA Vulnerability Analysis in Binary Form
	16-bit RSA Illustration

